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A least-squares approach is proposed to remedy some of the weaknesses of the method of moments. 
It is shown by an application to the hydrogen molecule that the least-squares procedure yields reliable 
results in cases where the method of moments fails. The prediction of equilibrium internuclear distances 
by the least-squares method is also found to be more reliable than the corresponding results obtained 
by the method of moments. 
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1. Introduction 

There exists a vast variety of methods devoted to the problem of getting good 
approximations to the eigenvalues and the eigenfunctions of the Schr/Sdinger 
equation for a molecular system. Most of these methods or algorithms are based 
on the standard Ritz variational principle. The advantage of the Ritz method is 
that the eigenvalue problem contains only straightforward algebraic expressions 
when linear trial functions are used, and that it yields simultaneous upper bounds 
on both ground and excited states energies. However, further progress in the 
application of this method seems to be hampered by difficulties in integral evalu- 
ations. When explicit correlation terms are introduced into the trial functions, 
one is posed with the problem of evaluating very difficult multi-dimensional 
integrals for the matrix elements of the Hamil tonian in question. To surmount 
this obstacle some bivariational procedures have been devised, among which the 
method of moments  [1, 3] seems to be quite promising. 

The attractiveness of the method of moments  is due to the possibility of 
simplification of the integral computation.  This can be achieved by using a very 
effective basis set on the right, say correlated wave functions, and then use such 
functions on the left which lead to relatively simple integrals. The choice of the 
set on the left can also be made in a way leading to a wave function with an im- 
proved accuracy in physically important  regions of configuration space. Contrary 
to the standard Ritz procedure, the approximate  eigenvalue obtained by the 
method of moments  has no upper-bound character. This might be considered as a 
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disadvantage, but this lack of upper-bound character yields the possibility of 
obtaining some "random sampling type" error estimates [2]. A more serious 
objection, however, is that the method is not entirely reliable. Schwartz [4] and 
Armour [5-1 have shown that calculations may fail, partly or completely, due to 
numerical instability if the imbalance between the functions used on the right and 
the left is too great. To improve the method's reliability, two proposals have been 
made. The first one, which has been discussed by Hegyi e t  al.  [2], is to determine 
criteria for selecting an appropriate set of functions to use on the left in conjunction 
with a given set on the right. The second possibility is to average the results 
obtained in a large number of method of moment calculations. In this paper we 
shall advocate a third approach, a generalization of the method of moments to 
a least-squares problem. 

In the next section we shall review the relevant features of the method of 
moments, reformulate it into a least-squares problem, and discuss some theoretical 
aspects of this least-squares method. In the third section the proposed method is 
applied to the hydrogen molecule as a test example. 

2. A Generalization of the Method of Moments 

The dissymmetric equations characterizing the method of moments can be 
obtained by the following considerations. Let {)~i, i= 1,..., n} and {q~i, i= 1,..., n} 
be two nonidentical sets of expansion functions. Approximations to the eigen- 
functions of the SchrSdinger equation 

~ = E ~ '  (1) 

are assumed to be of the form 

X = ~,7= 1 ai)~i 

= ~ 7 = 1  bidPi �9 (2) 

The coefficients {bi} and the approximate eigenvalue W are determined by re- 
quiring that the projection of (Yf-W)q~ onto the subspace spanned by {;/i} 
should be zero, i.e. 

(Xkl(gff -- W)l ~ =  1 bi (~ i )  = O ,  k = 1 , . . . ,  n (3) 

which is equivalent to 

~,'~= 1 (Hk i  - -  W S k i ) b i  = O ,  k = 1 . . . . .  n (4) 

where 

H k i  = ( ; ~ k l ~ l r  (5) 

Ski = ( Z k l q ~ i )  �9 

By exactly the same type of argument one arrives at the equations for the co- 
efficients {ai} : 

E~r =1 a*(Hk~  - -  W S k , )  = O ,  i = 1 , . . . ,  n .  (6) 
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The two sets of Eqs. (4) and (6) may be called respectively the direct and the adjoint 
bivariational equations. Since the secular determinants associated with these two 
sets of equations differ only by an interchange of rows and columns, the two sets 
of equations must have the same eigenvalues. However, the eigenvectors of the 
direct and the adjoint equations corresponding to the same eigenvalue are in 
general different. Because of the non-symmetric character of the matrices involved, 
complex roots may also appear. If this occurs in the neighbourhood of the energy 
values one is interesting in, one of the basis sets must be changed. 

The relationship of X and ~b to the corresponding exact eigenfunction 7 j, has 
been discussed by Boys [6]. Boys demonstrated that 

W =  E + fl + ]2(wl l.+-]2W12 + lz + W21 .q-...) , 

~ =  T + p(qb01 +/.t+ qbl i + p~02 + ...), 

X=  ~r/~_~+(xlO_t_#X 11 ~_~+x2O_~_...), 

(7) 

(8) 

(9) 

where ~ and E are the exact eigenfunction and eigenvalue, and the eigenfunction 
is assumed to be real. The parameters/~ and #+ are unknown which are defined 
to be the least-squares errors in fitting 7 ~ with linear combinations of the expansion 
functions {qSi} and {Zi}; i.e. 

# =  { ( 7 j -  ~']=1 b',~biltP- ~']= ~ b'iO~} } 1/: , (10) 

/z+= {(kv- ZT=~ a ' i z i l~-  Z7=1 a'izi)} 1/2. (11) 

The parameters W ~ ,  q)oa, x~O, etc. in Eqs. (7-9) are Taylor series coefficients. 
Provided that these coefficients are not unduly large, and the functions {q~} used 
on the right are capable of fitting 7 j very accurately, it can be expected that W 
and �9 will be very accurate even though the functions {Xi} used on the left are only 
capable of fitting 7' with considerably less accuracy. 

Unfortunately, the method of moments equations are akward to solve and 
their solutions may prove to be numerically unstable, particularly, if the difference 
between the basis sets used on the right and left is considerable. The numerical 
problems due to the imbalance between the basis sets can be avoided by casting 
Eqs. (4) and (6) into a least-squares problem and by using a larger basis set onto 
which ( ~  - W)~ [-or ( ~ -  W ) X ]  is projected, i.e. 

,r= ZT>--=~ wkl(Zkl(~-- W)l~)l 2 
m_>, (12) 

= ~k---, wkl(z~l (~-  W)l ~7=, b,q~,)l 2 

where {Wk} are weight factors. The functions {Zk} used on the left are assumed to 
be normalized. The coefficients {b~} and the eigenvalue Wcan then be determined 
by minimizing the functional a when the coefficients are subjected to a given 
normalization condition. 

The only further requirement iri the least-squares (LSQ) method beyond the 
method of moments are overlap integrals of the form (ZklZj). The evaluation of 
these integrals represents no difficulties except in calculations on many electron 
systems in which the X~'s contain non-separable functions of the interelectronic 
distances. Difficulties of this type can be avoided by applying the LSQ-method 
in the context of the transcorrelated method [7]. The key point is that the LSQ- 
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method is numerically much more stable than the method of moments; there is 
no necessity to invert the overlap matrix S in Eq. (4), or carry out some other 
equivalent procedure, which may lead to difficulties if S is nearly singular. Thus 
an increased stability and reliability is obtained at the cost of a few more integrals 
to be calculated since m is usually greater than n. In the case m=n,  the LSQ 
approach is equivalent to the method of moments. However, even in this case it 
is reasonable to expect that the LSQ procedure is numerically more stable than the 
conventional routines for solving the dissymmetric equations. 

If the set on the left is an orthonormal basis and the weight factors {wk} are 
all set equal to 1, then it is obvious that o- is an approximation to the variance. 

cr= ~W~ I(zkl~- W l + ) l  2 

=YL~r (+IX-  Wlzk)(ZkI~-- Wl+) 
_-< Yf:l (+1~-  WlZk)(Zkl~-- WI+) 
= ( + l ( ~ f - -  W ) : l + )  = % r '  (13) 

Since 

~O'var = 0 (14) 
OW 

at the minimum for a .... one obtains 

I41-- (+lYgl+) (15) 
(+1+) 

in the case + and Wis determined by minimizing the variance. This last result 
should indicate that for a given n and increasing m, the energy value obtained by 
minimizing a will converge towards the value given by the Rayleigh quotient. 
There is, however, no argument to suggest that the convergence is monotonic. 

The preceding arguments might lead one to believe that with this particular 
choice of weight factors and an orthonormal basis on the left, that there is an 
upper bound character in the LSQ-method when m > n. In general this is certainly 
not the case, which the following counter example will show. 

Suppose that the basis sets {q~i, i = 1, ..., m} and {Zk, k = 1, ..., m} span the vector 
spaces A and f2, respectively. A method of moments calculation based on these 
sets yields an eigenvalue W and a corresponding normalized eigenvector +. 
Suppose further that Wis less than the exact energy value. A new set {t h, i = 1, ..., n} 
spanning a proper subspace F of A, i.e. the dimension n is less than the dimension 
rn of A, is chosen such that 

t/1 = + .  (16) 

An LSQ-calculation with a basis set on the right spanning F and {Zk, k = 1,.. . ,  m} 
on the left will obviously give Wand + as a solution. This particular LSQ-calcu- 
lation yields an energy below the exact value irrespective of how much greater m 
is than n. 

Furthermore, if 

th(x ) = cos x+ + sin x+' (17) 
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where ~'  is a function orthogonal to ~, i.e. 

(~1~')  --0 (18) 
( ~ ' i ~ ' >  = 1 

is used instead of t/, and W(x) is continuous in some interval containing the point 
x =0, then there exists a ~ >0  such that W(x) is less than the exact value for Ixl <6. 

On the other hand, the LSQ eigenvalue Wis an upper bound if the set on the 
right spanning F is a subspace of f2, generated by the set {Xk, k-- 1, ..., m} used 
on the left. By assuming that { ~gk, k = 1, ..., m} is an orthonormal set spanning f2, 
one obtains the following value for Wat the minimum of the LSQ-functional 

W___ ~ I2~'= x { ( ~ ] ~ 1 % ) ( % 1 ~ )  + ({~1%)(%I~1~)}  (19) 

Since F C ~2, 

(20) 

By combining Eqs. (19) and (20) one arrives at 

w -  (21) 

Since ~ is obtained by the LSQ-procedure, the value W given Eq. (21) is above 
the result which coult be obtained by minimizing the Rayleigh-quotient. 

The LSQ-method presented has been used with success in connection with 
scattering problems [2] Resently it has also been suggested by Roeggen [8] that 
the LSQ-method may be useful in dealing with large configuration interaction 
expansions. Results are presented in the next section which indicate that it also 
has an important role as a more reliable alternative to the method of moments. 

3. Application to H 2 

The program used to perform the work was developed from the program for 
the method of moments calculations reported in Ref. [5]. The sets of expansion 
functions are defined in terms of the confocal elliptical coordinates 2, #, and 4}. 
If the nuclei A and B are at a distance R apart, then the coordinates 2 and # of any 
point are given by 

2 = (r A + ru)/R (22) 

p = (r A -- rB)/R (23) 

where rA, for example, is the distance of the point from nucleus A. The third 
coordinate ~b is the azimuthal angle. The sets of expansion functions, {Zi} and {q~i}, 
were chosen from the set of functions of the form: 

1 m n j k  
2~ (2122#1P2 + 2~ 2~#k#�89 2 exp { -- 6(21 + 22) } (24) 
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Table  1. Basis  funct ions  used, character ized  by indices  def ined in c o n n e c t i o n  wi th  Eq.  (24) 

i rn i n i  Ji  k i  P i 

1 0 0 0 0 0 

2 0 0 0 2 0 

3 0 0 1 1 0 

4 1 0 1 1 0 

5 1 0 0 2 0 

6 0 0 2 2 0 

7 1 0 0 0 0 

8 Z 0 0 0 0 

9 I 1 2 0 0 

10 1 1 0 0 0 

I I  2 1 0 0 0 

12 2 0 1 1 0 

13 1 1 1 i 0 

14 1 1 2 0 0 

15 2 1 1 1 0 

16 1 1 2 2 0 

17 2 2 1 1 0 

18 0 0 0 0 1 

19 0 0 0 0 2 

20 Z 0 0 0 1 

21 0 0 1 1 1 

22 1 0 0 0 1 

Z3 1 0 0 0 2 

where 

2 
~ 1 2  =~r12 (25) 

and the numbers m, n,j, k, and p have non-negative integer values. Since the 
calculation is on the ground state which is a singlet of S + symmetry, the condition 
( -  1) j+k= 1 must be satisfied. A list of the basis set from which {Zi} and {qSi} were 
chosen, is given in Table 1. The value o f f  is set equal to 0.95 for all functions. 

The evaluation of the relevant matrix elements Hu and Ski is described in 
Ref. [5]. The matrices H and S are all real. 

When the basis sets {)~k, k = 1, . . . ,  m} and {q5 i, i =  1 . . . .  , n} have been chosen, 
the program first evaluated the matrices H and S, Eq. (5), and then transformed to 
representations H' and S' over orthonormal bases {t/k, k = 1 . . . .  , m} and {Oi, i=  1, 
..., n} derived from {Zk} and {~bi}, respectively. The program then minimized the 
functional 

a =  ~->_--~ ( ~ [ ~ -  Wit~kill- W[~)  (26) 

with respect to ~b and W. Since 

= Z7:1 bill, (27) 
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the LSQ-functional has the following form in matrix notation 

a = b r ( H  ' - W S ' ) r ( H  ' -  WS ' )b  (28) 

= b r A ( W ) b .  

The normalization constraint 

brb  = 1 (29) 

is dealt with by the method of Lagrange multipliers, i.e. the functional 

a u = a -  # (b rb  - 1) 

is considered. By requiring that a ,  should be stationary with respect to the vari- 
ations in the parameter W and the coefficients {bi}, one obtains the following 
equations 

1 b r ( S ' r H  ' + H ' r S ' ) b  

W =  2 brS , rS ,  b (30) 

and 

( A ( W ) - # I ) b = O  (31) 

where ! is the identity matrix. Equations (30) and (31) are solved by iterations. 
A starting value is chosen for E which is in the region to which W is expected to 
converge. Then Eq. (31) is solved with this value of W, for the lowest eigenvalue/z 
and associated normalized eigenvector, b, of A(W) .  A new value of W is then 
determined according to Eq. (30). The procedure is repeated until convergence is 
obtained. 

The convergence criterion used in all cases with one exception to be specified 
later, was that the iterations were continued until the change in the energy value, 
W, produced by successive iterations was less than 10 -6 a.u. The accompanying 
change in o- was recorded in each case and was found always to be much less that 
10 -6" 

The basis sets to be employed on the left in the calculations are 

SetA: 1--+ 17 

Set B: 1~5,7 ,8 ,  10, 18~22,6, 11,23,9 

SetC:  1--->8, 18, 19,9~15 

where the numbering is according to Table 1. When less than the maximum 
number of basis functions on the left is used, say m functions, then these functions 
are the first m members of the set considered when the numbering is defined by 
the listing of functions above. For all calculations the same set is used on the 
right, namely the first 10 functions of set B. It should be noticed that the set A is 
qualitatively different from B and C since it does not include functions depending 
on the electronic distance r12. 

The first problem considered was the question of the convergence properties 
of the minimization technique adopted. A series of calculations using set A on 
the left and with m= n--10 was performed with different initial values of W 
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Table 2. LSQ-calculations with basis set A on theleff 

No. of fns. a W Binding No. of 
on 1.h.s. xl06 (a.u.) energy (eV) iterations 

10 0 - 1.177852 4.8394 27 

11 24 - 1.177876 4.8400 8 

12 85  - 1 . 1 8 8 2 3 2  5 . 1 2 1 8  25 

13 131 - 1 . 1 7 8 2 0 3  4 . 8 4 8 9  5 

14 263 - 1 . 1 7 8 1 6 8  4 . 8 4 8 0  3 

15 275 - 1.178607 4.8599 4 

16 276 - 1.178613 4.8601 2 

17 334 - 1.178880 4.8673 4 

Initial value of W =  - 1.15 a.u. 
Internuclear distance R = 1.40 a.u. 
Convergence criterion: 6W < 10- 6 
The quantity 6W is the difference in W values obtained in the final and the preceding iterations for the 
number of functions on the left. 

ranging from - 1.15 a.u. to - 1.50 a.u. The maximum discrepancy in the energy 
at the minimum was found to be 5 . 1 0 - 6  a.u. This discrepancy can probably be 
attributed to round-off errors (MM-calculation failed in this case), and we con- 
clude that the minimization technique used is reliable. The number of iterations 
of course, depends on how far the initial value is away from the value of the energy 
at the minimum. In our work we used only direct iterations. But the number of 
necessary iterations can certainly be reduced by applying an extrapolation techni- 
que to the iteration sequence of W-values obtained, say Pade approximants of 
type II  [9]. As far as the ground state is concerned, a satisfactory choice of initial 
value can be based on the self-consistent field result and a rough estimate of the 
correlation energy. 

In Table 2 LSQ-calculations with basis set A on the left is presented. The 
initial value of W = - 1.15 a.u. and the internuclear distance R = 1.40 a.u. This is 
a case where there is an imbalance between the two basis sets employed since the 
set on the right includes functions depending on rlz while the set on the left does 
not. It might therefore not be surprising that all the energy values obtained when 
m is ranging from 10 to 17, are below the "exact" one which is - 1.17444 a.u. [10]. 

On the other hand, all the energy values in Table 2 with one exception, m = 12, 
are close to the "exact" value. However, which of these results obtained with 
different m values, is the best one in the meaning closest to the exact result, can 
certainly not be decided upon by considering the sequence of W values. On the 
other hand, the safest choice will in most cases be to choose the result corres- 
ponding to the maximum value of m since the functional cr in this case represents 
the best approximation to the variance. Another point pertaining to Table 2 which 
we would like to emphasize is the result for m = n = !0. In this case the method of 
moments  calculation fails completely while the LSQ-method yields a very rea- 
sonable result and thereby supports the assumption about the LSQ-method 's  
greater stability. 
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Table 3. LSQ-calculations with basis set B on the left 

169 

No. of fns. a W Binding No. of 
on 1.h.s. x l 0  6 (a.u.) energy (eV) iterations 

11 75 - 1.173923 4.7324 2 

12 150 - 1.173927 4.7326 2 

13 253 - 1.173931 4.7327 2 

14 858 - 1.173933 4.7327 2 

15 858 - 1.173933 4.7327 2 

16 923 - 1.173930 4.7326 2 

17 998 - 1.173925 4.7325 2 

The method of moments calculation which is variational in this case, yields W = -1.173943 a.u., and 
this value is taken as the initial value for the LSQ-calculations. Internuclear distance R =  1.40 a.u. 
Convergence criterion: 6a < 10- 6. The quanti ty 6a is the difference in a values obtained in the final and 
the preceding iterations for the number of functions on the left. 

Table 4. LSQ energy values (a.u.) for varying internuclear distance using set A on the left 

R No. of functions on 1.h.s. 

(a.u.) 14 15 16 17 

I .30 

I .31 

I .32 

I .33 

1 .34 

I .35 

I .36 

I .37 

I .38 

I .39 

I .40 

I .41 

I .42 

I .43 

I .44 

I .45 

- 1.177576 

- 1.177836 

- 1.178047 

- 1.178209 

- 1.178236 

- 1.178399 

- 1.178430 

- 1.178420 

- 1.178373 

- I 178288 

- 1 178168 

- I 178015 

- I 177830 

- I 177613 

- I 177367 

- I 177092 

- 1.177693 - 1.177712 - 1.177921 

- 1.177989 - 1.178007 - 1.178221 

- 1.178234 - 1.178251 - 1.178471 

- 1.178431 - 1.178446 - 1.178672 

- 1.178581 - 1.178595 - 1.178827 

- 1.178667 - 1.178699 - 1.178937 

- 1.178750 - 1.178761 - 1.179004 

- 1.178772 - 1.178781 - 1.179030 

- 1.178754 - 1.178762 - 1.179017 

- 1.178698 - 1.178706 - 1.178966 

- 1.178606 - 1.178613 - 1.178879 

- 1.178480 - 1.178486 - 1.178757 

- 1.178320 - 1.178326 - 1.17860i 

- 1.178128 - 1.178133 - 1.178414 

- 1.177905 - 1.177910 - 1.178196 

- 1.177652 - 1.177657 - 1.177948 

Convergence criterion: 6 W <  10 -6 a.u. 

There is a peculiarity in Table 2 which has to be mentioned, namely the result 
for m =  12. This result deviates strongly from the main stream of results given in 
the table. If the absolute difference in W-values obtained with m- -12  and any 
other m value is compared with the differences in energy values for any pair of  m's 
not involving m = 12, then differences involving m = 12 are found to be an order 
of magnitude greater than those not involving m =  12. A first guess of an expla- 
nation of this surprising result might be that the result is due to an error of some 
type connected with the basis function number 12 of set A. However,  this possi- 
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Table 5. LSQbinding energies(eV)for varying internuclear distance using set A on the le~ 

R No .  of  funct ions  on  1.h.s. 
(a.u.) 14 15 16 17 

1.30 4.8318 4.8350 4.8356 4.8412 

1.31 4.8389 4.8431 4.8436 4.8494 

1.32 4.8447 4.8498 4.8502 4.8562 

1.33 4.8491 4.8551 4.8555 4.8617 

1.34 4.8522 4.8592 4.8596 4.8659 

1.35 4.8542 4.8621 4.8624 4.8689 

1.36 4.8551 4.8638 4.8641 4.8707 

1.37 4.8548 4.8644 4.8646 4.8714 

1.38 4.8535 4.8639 4.8641 4.8710 

1.39 4.8512 4.8624 4.8626 4.8697 

1.40 4.8480 4.8599 4.8601 4.8673 

1.41 4.8438 4.8564 4.8566 4.8640 

1.42 4.8387 4.8521 4.8522 4.8597 

1.43 4.8329 4.8468 4.8470 4.8546 

1.44 4.8262 4.8408 4.8409 4.8487 

1.45 4.8187 4.8339 4.8340 4.8420 

Convergence criterion: fi W < 1 0 -  6 a.u. 

Table 6. LSQ energy values (a.u.) for varying internuclear distance using set C on the left 

R No. of functions on 1.h.s. 
(a.u.) 14 15 16 17 

1.30 - 1.171549 - 1.171479 - 1.171469 - 1.171438 

1.31 - 1.172008 - 1.171942 - 1.171932 - 1.171902 

1.32 - 1.172413 - 1.172351 - 1.172341 - 1.172312 

1.33 - 1.172767 - 1.172709 - 1.172698 , 1.172669 

1.34 - 1.173070 - 1.173016 - 1.173004 - 1.172976 

1.35 - 1.173325 - 1.173274 - 1.173262 - 1.173235 

1.36 - 1.173534 - 1.173485 - 1.173472 - 1.173446 

1.37 - 1.173696 - 1.173650 - 1.173637 - 1.173612 

1.38 - 1.173815 - 1.173771 - 1.173758 - 1.172733 

1.39 - 1.173891 - 1.173850 - 1.173836 - 1.173811 

1.40 - 1.173927 - 1.173887 - 1.173873 1.173849 

1.41 - 1.173922 - 1.173884 - 1.173870 1.173846 

1.42 1.173879 - 1.173842 - 1.173828 - 1.17380a 

1.43 1.173799 - 1.173763 - 1.173748 - 1.173725 

1.44 - 1.173682 - 1.173648 - 1.173632 1.173610 

1.45 - 1.173531 - 1.173497 - 1.173482 - 1.173459 

Convergence criterion: 3 w < 1 0 -  6 a.u. 

bi l i ty  can be d i s regarded  since the ac tua l  funct ion is also inc luded  in the sets wi th  
m > 12 and  the co r r e spond ing  funct ionals  do  not  d i sp lay  the same peculiari t ies.  
The mos t  r easonab le  exp lana t ion  seems to be that  the funct ional  with m =  12 has 
a s t range behav iou r  a r o u n d  the min imum,  pe rhaps  in the form of  two close 
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Table 7. LSQ binding energies (eV) for varying internuclear distance using set C on the left 

R No. offunctions on 1.h.s. 
(a.u.) 14 15 16 17 

I .30 

I .31 

I .32 

I .33 

I .34 

I .35 

I .36 

I .37 

I .38 

I .39 

1 40 

1 41 

1 42 

1 43 

1 44 

1 45 

4.6678 4.6659 4 

4.6803 4.6785 4 

4.6914 4.6897 4 

4.7010 4.6994 4 

4.7092 4.7078 4 

4.7162 4.7148 4 

4.7218 4.7205 4 

4.7263 4.7250 4 

4.7295 4.7283 4 

4.7316 4.7305 4 

4.7325 4.7315 4 

4.7324 4.7314 4 

4.7312 4.7302 4 

4.7291 4.7281 4 

4.7259 4.7250 4 

4.7218 4.7209 4 

6657 

6783 

6894 

6991 

7074 

7145 

7202 

7247 

7280 

7301 

7311 

7310 

7298 

7277 

7245 

7204 

4.6648 

4.6774 

4.6886 

4.6983 

4.7067 

4.7137 

4.7195 

4.7240 

4.7273 

4.7294 

4 7304 

4 7303 

4 7292 

4 7271 

4 7239 

4 7198 

Convergence criterion: 6 W < 10- 6 a.u. 

minima, and that this abnormal character of the functional is changed when more 
basis functions are added. The occurence of functionals that have this peculiar 
behaviour might be considered as a weakness of the proposed LSQ-procedure. 
In our calculations the case m = 12 associated with set A, is the only one with this 
particular behaviour, and that might indicate that this problem occurs rather 
seldom. Furthermore, anomalous functionals of this type can easily be dis- 
covered, isolated and disregarded by performing a set of calculations with a 
different number of basis functions on the left. The additional work involved in 
performing such a sequence of calculations is negligible since the minimization 
of one of these functionals yields extremely good initial values to be used in the 

succeeding calculations. 
In Table 3 one of our preliminary LSQ calculations is presented. For these 

calculations a weaker convergence criterion was used since the iterative procedure 
was terminated when 6o-<10 .6  . However, comparison calculations using the 
stronger convergence criterion, 6W < 10-6, indicate that this is unlikely to affect 
significantly the accuracy of the W values obtained. The calculation illustrates 
one of the theoretical points discussed in Section 2. The basis set on the right is 
in this case a proper subset of the basis set used on the left. Theoretically we then 
expect the LSQ-calculations to yield energy values above the variational result 
obtained with the basis on the right. All the results in Table 3 are in agreement 
with this theoretical prediction. 

Finally, a set of calculations of the energy and the binding energy for varying 
internuclear distance is presented. The results are given in Tables 4-7. Two 
different basis sets are used on the left, set A and set C. In the former case the po- 
sition for the predicted minimum lies in the range 1.36-1.38 a.u. For increasing 



172 I. Roeggen et al. 

m the minimum is shifted to the right. As for the second set, consistently better 
values are obtained for the equlibrium internuclear distance, ranging from 1.40 to 
1.41 a.u. The predicted position of the minimum changes in this case very little 
with respect to the number of basis functions used on the"left. The results in 
Tables 4-7 should therefore indicate that when the basis sets do not differ quali- 
tatively too much, as in the calculations involving set C, the LSQ procedure will 
predict reliable internuclear distances. And even if this condition is not satisfied, 
as in the calculation involving set A, improved results compared with a method 
of moments  calculation might be expected. 

4. Conclusions 

In an evaluation of the LSQ-procedure we would like to emphasize that the 
proposed method has essentially the same advantage as the method of moments,  
namely the possibility of simplification in the calculation of integrals. However, 
on the basis of this work it seems reasonable to claim greater reliability of the 
LSQ-method compared with the method of moments  since the former yields 
good results where the latter fails completely. In addition, the LSQ method seems 
to be more reliable in predicting equilibrium distances. But the relative merits of 
the two methods considered can only be settled completely when additional 
calculations are performed. It is the opinion of the authors that in this context 
the LSQ-method has not had the attention it deserves. 

In this work we have restricted ourselves to the calculation of the energy. An 
equally important  and interesting aspect which has to be studied, is the question 
of how to calculate expectation values within this LSQ-framework. One approach 
could be the following: After determining the right hand wave function by mini- 
mizing the LSQ-functional, a second function can be obtained by projecting the 
r.h. function onto the subspace spanned by the basis set used on the left. These 
two approximate wave functions can then be used in the standard method of 
moments  expression for expectation values. But a test of this approach might be 
the theme for another study. 
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